Publications

Dr. Rubloff’s Publication Links:

Google Scholar

ResearcherID: D-4142-2009

ORCID: 0000-0002-1901-3982

recent publications

Ultra-thin on-chip ALD LiPON capacitors for high frequency application

Ultra-thin on-chip ALD LiPON capacitors for high frequency application

K. Ahuja, V. Sallaz, R.B. Nuwayhid, F. Voiron, P. McCluskey, G.W. Rubloff, K.E. Gregorczyk. J. Power Sources 575, 233056 (2023). https://doi.org/10.1016/j.jpowsour.2023.233056

Suppression of Electrochemical and Chemical Degradation of Li10GeP2S12 by an Elastomeric Artificial Solid Electrolyte Interphase

Suppression of Electrochemical and Chemical Degradation of Li10GeP2S12 by an Elastomeric Artificial Solid Electrolyte Interphase

Y. Wang, J. Ko, M. Lee, S. Klueter, E. Kallon, J. Horeauf, D. Fontecha, C. Lee, G.W. Rubloff, S.B. Lee, A.C. Kozen. ACS Appl. Energy Mater (2023). https://doi.org/10.1021/acsaem.3c01397

On-Wafer Wide-Pore Anodic Aluminum Oxide

On-Wafer Wide-Pore Anodic Aluminum Oxide

N. KimM. CasaretoM. MowbrayR. HenryJ. HaydenG. RubloffS.B. Lee, K.E. Gregorczyk. J. Electrochem. Soc. 170, 063507 (2023). https://doi.org/10.1149/1945-7111/acd87b

Dynamic Electrode–Electrolyte Intermixing in Solid-State Sodium Nano-Batteries

Dynamic Electrode–Electrolyte Intermixing in Solid-State Sodium Nano-Batteries

R.B. Nuwayhid, A.C. Kozen, D.M.Long, K. Ahuja, G.W. Rubloff, K.E. Gregorczyk. ACS Appl. Mater. Interfaces 15, 20, 24271–24283 (2023). https://doi.org/10.1021/acsami.2c23256

Electrochemical-mechanical coupling measurements

Electrochemical-mechanical coupling measurements

Y. Song, B. Bhargava, D.M. Stewart, A.A. Talin, G.W. Rubloff, P. Albertus. Joule 7, 4, 652-674 (2023). https://doi.org/10.1016/j.joule.2023.03.001

Lithium Spatial Distribution and Split-Off Electronic Bands at Nanoscale V2O5/LiPON Interfaces

Lithium Spatial Distribution and Split-Off Electronic Bands at Nanoscale V2O5/LiPON Interfaces

Z. Levy, V.C. Ferrari, P. Rosas, M.J. Walker, K. Duddella, M. Haseman, D. Stewart, G. Rubloff, L.J. Brillson. ACS Appl. Energy Mater. 6, 9, 4538–4548 (2023). https://doi.org/10.1021/acsaem.2c03683

Micro-Raman Stress Characterization of Crystalline Si as a Function of the Lithiation State

Micro-Raman Stress Characterization of Crystalline Si as a Function of the Lithiation State

H. Wang, N.S. Kim, Y. Song, P. Albertus, S.B. Lee, G.W. Rubloff, D.M. Stewart. ACS Appl. Mater. Interfaces 15, 10752–10760 (2023). https://doi.org/10.1021/acsami.2c22530

Differentiating chemical and electrochemical degradation of lithium germanium thiophosphate and the role of atomic layer deposited protection layers

Differentiating chemical and electrochemical degradation of lithium germanium thiophosphate and the role of atomic layer deposited protection layers

Y. Wang, S. Klueter, M. Lee, J. Yun, B. Hoang, E. Kallon, C. Lee, C.F. Lin, G.W. Rubloff, S.B. Lee, A.C. Kozen. Mater. Adv 3, 8332-8340 (2022). https://doi.org/10.1039/D2MA00776B

Co-sputtering of lithium vanadium oxide thin films with variable lithium content to enable advanced solid-state batteries

Co-sputtering of lithium vanadium oxide thin films with variable lithium content to enable advanced solid-state batteries

V.C. Ferrari, N.S. Kim, S.B. Lee, G.W. Rubloff, D.M. Stewart. J. Mater. Chem. A 10, 12518-12531 (2022). https://doi.org/10.1039/D2TA01021F

Low temperature plasma-enhanced atomic layer deposition of sodium phosphorus oxynitride with tunable nitrogen content

Low temperature plasma-enhanced atomic layer deposition of sodium phosphorus oxynitride with tunable nitrogen content

D. Fontecha, R.B. Nuwayhid, A.C. Kozen, D.M. Stewart, G.W. Rubloff, K.E. Gregorczyk. J. Vac. Sci. Technol. A 40(3), 032403 (2022). https://doi.org/10.1116/6.0001752

Nanoscale Li, Na, and K ion-conducting polyphosphazenes by atomic layer deposition

Nanoscale Li, Na, and K ion-conducting polyphosphazenes by atomic layer deposition

R.B. Nuwayhid, D. Fontecha, A.C. Kozen, A. Jarry, S.B. Lee, G.W. Rubloff, K.E. Gregorczyk. Dalton Trans. 51, 2068-2082 (2022). https://doi.org/10.1039/D1DT03736F

Ion-Conducting, Electron-Blocking Layer for High-Performance Solid Electrolytes

Ion-Conducting, Electron-Blocking Layer for High-Performance Solid Electrolytes

E.M. Hitz, H. Xie, Y. Lin, J.W. Connell, G.W. Rubloff, C.F. Lin, L. Hu. Small Struct. 2, 2100014 (2021). https://doi.org/10.1002/sstr.202100014

Al2O3 Thin Films on Magnesium: Assessing the Impact of an Artificial Solid Electrolyte Interphase

Al2O3 Thin Films on Magnesium: Assessing the Impact of an Artificial Solid Electrolyte Interphase

E. Sahadeo, G. Rubloff, S.B. Lee, C.F. Lin. Front. Energy Res. 9, 618368 (2021). https://doi.org/10.3389/fenrg.2021.618368

Hot and Cold Pressed LGPS Solid Electrolytes

Hot and Cold Pressed LGPS Solid Electrolytes

Y. Wang, B. Hoang, J. Hoerauf, C. Lee, C.F. Lin, G.W. Rubloff, S.B. Lee, A.C. Kozen. J. Electrochem. Soc. 168, 010533 (2021). https://doi.org/10.1149/1945-7111/abdb44

Graphical abstract: Structural Transformations in LixV2O5

Elucidating Structural Transformations in LixV2O5 Electrochromic Thin Films by Multimodal Spectroscopies

Angelique Jarry, Mitchell Walker, Stefan Theodoru, Leonard J. Brillson, Gary W. Rubloff. Chem. Mater. 32, 17, 7226 (2020). https://dx.doi.org/10.1021/acs.chemmater.0c01478

Suppression of hydrogen evolution at catalytic surfaces in aqueous lithium ion batteries

Suppression of hydrogen evolution at catalytic surfaces in aqueous lithium ion batteries

F. Wang, C. Lin, X. Ji, G.W. Rubloff, C. Wang. J. Mater. Chem. A 8, 14921 (2020). https://doi.org/10.1039/D0TA05568A

Graphical abstract: Nanoscale depth and lithiation dependence of V2O5 band structure by cathodoluminescence spectroscopy

Nanoscale depth and lithiation dependence of V2O5 band structure by cathodoluminescence spectroscopy

M. Walker, A. Jarry, N. Pronin, J. Ballard, G.W. Rubloff, L.J. Brillson. J. Mater. Chem. A 8, 11800 (2020). https://doi.org/10.1039/D0TA03204B 

Atomic Layer Deposition of Sodium Phosphorus Oxynitride: a Conformal Solid-State Sodium-ion Conductor

R.B. Nuwayhid, A. Jarry, G.W. Rubloff, K.E. Gregorczyk. ACS Applied Materials & Interfaces 12, 19, 21641 (2020). https://doi.org/10.1021/acsami.0c03578
Enabling high performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid

Enabling high performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid

M.D. Widstrom, K.B. Ludwig, J.E. Matthews, A. Jarry, M. Erdi, A.V. Cresce, G. Rubloff, P. Kofinas, Electrochimica Acta 345, 136156 (2020). https://doi.org/10.1016/j.electacta.2020.136156

Li-Containing Organic Thin Film—Structure of Lithium Propane Dioxide via Molecular Layer Deposition

Li-Containing Organic Thin Film – Structure of Lithium Propane Dioxide via Molecular Layer Deposition

H. Wang, K.E. Gregorczyk, S.B. Lee, G.W. Rubloff, C.F. Lin, J. Phys. Chem. C 124, 12, 6830 (2020). https://doi.org/10.1021/acs.jpcc.9b11868

Mg2+ ion-catalyzed polymerization of 1,3-dioxolane in battery electrolytes

Mg2+ ion-catalyzed polymerization of 1,3-dioxolane in battery electrolytes

E. Sahadeo, Y. Wang, C.F. Lin, Y. Li, G. Rubloff, S.B. Lee, Chem. Commun. 56, 4583 (2020). https://doi.org/10.1039/d0cc01769h

Enhancing Lithium Insertion with Electrostatic Nanoconfinement in a Lithography Patterned Precision Cell

Enhancing Lithium Insertion with Electrostatic Nanoconfinement in a Lithography Patterned Precision Cell

S. X. Li, N. S. Kim, K. McKelvey, C. Liu, H. S. White, G. W. Rubloff, S. B. Lee, M. A. Reed, ACS Nano 13, 7, 8481 (2019). https://doi.org/10.1021/acsnano.9b04390

High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes

Y. Wang, E. Sahadeo, G. Rubloff, C. F. Lin, S. B. Lee, J. Mater. Sci. 54, 3671 (2019). https://doi.org/10.1007/s10853-018-3093-7

 Electrolyte interphase layers

Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li–S Batteries

Y. Wang, C. F. Lin, J. Rao, K. Gaskell, G. Rubloff, S. B. Lee, ACS Appl. Mater. Interfaces 10, 29, 24554 (2018). https://doi.org/10.1021/acsami.8b07248

Kinetics‐Controlled Degradation Reactions at Crystalline LiPON/LixCoO2 and Crystalline LiPON/Li‐Metal Interfaces

Kinetics‐Controlled Degradation Reactions at Crystalline LiPON/LixCoO2 and Crystalline LiPON/Li‐Metal Interfaces

K. Leung, A. J. Pearse, A. A. Talin, E. J. Fuller, G. W. Rubloff, N. A. Modine, ChemSusChem 11, 1956 (2018). https://doi.org/10.1002/cssc.201800027

Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors

Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors

Y. Yao, F. Jiang, C. Yang, K. K. Fu, J. Hayden, C. F. Lin, H. Xie, M. Jiao, C. Yang, Y. Wang, S. He, F. Xu, E. Hitz, T. Gao, J. Dai, W. Luo, G. Rubloff, C. Wang, L. Hu, ACS Nano 12, 6, 5266 (2018). https://doi.org/10.1021/acsnano.7b08584

Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry

Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry

A. Pearse, T. Schmitt, E. Sahadeo, D. M. Stewart, A. Kozen, K. Gerasopoulos, A. A. Talin, S. B. Lee, G. W. Rubloff, K. E. Gregorczyk, ACS Nano 12, 5, 4286 (2018). https://doi.org/10.1021/acsnano.7b08751

Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

D. M. Stewart, A. J. Pearse, N. S. Kim, E. J. Fuller, A. A. Talin, K. Gregorczyk, S. B. Lee, G. W. Rubloff, Chem. Mater. 30, 8, 2526 (2018). https://doi.org/10.1021/acs.chemmater.7b04666

Highly Conductive, Light Weight, Robust, Corrosion‐Resistant, Scalable, All‐Fiber Based Current Collectors for Aqueous Acidic Batteries

Highly Conductive, Light Weight, Robust, Corrosion‐Resistant, Scalable, All‐Fiber Based Current Collectors for Aqueous Acidic Batteries

W. Luo, J. Hayden, S. H. Jang, Y. Wang, Y. Zhang, Y. Kuang, Y. Wang, Y. Zhou, G. W. Rubloff, C. F. Lin, L. Hu, Adv. Energy Mater. 8, 1702615 (2018). https://doi.org/10.1002/aenm.201702615

Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems

Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems

C. F. Lin, Y. Qi, K. Gregorczyk, S. B. Lee, G. W. Rubloff, Acc. Chem. Res. 51, 1, 97 (2018). https://doi.org/10.1021/acs.accounts.7b00524

Impact of pore size, interconnections, and dynamic conductivity on the electrochemistry of vanadium pentoxide in well defined porous structure

Impact of pore size, interconnections, and dynamic conductivity on the electrochemistry of vanadium pentoxide in well defined porous structures

N. Kim, E. Sahadeo, C. Liu, O. Rose, G. Rubloff, S. B. Lee, Phys. Chem. Chem. Phys. 20, 29708 (2018). https://doi.org/10.1039/C8CP04706E

Investigation of the water-stimulated Mg2+ insertion mechanism in an electrodeposited MnO2 cathode using X-ray photoelectron spectroscopy

Investigation of the water-stimulated Mg2+ insertion mechanism in an electrodeposited MnO2 cathode using X-ray photoelectron spectroscopy

E. Sahadeo, J. Song, K. Gaskell, N. Kim, G. Rubloff, S. B. Lee, Phys. Chem. Chem. Phys. 20, 2517 (2018). https://doi.org/10.1039/C7CP06312A

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection

C. F. Lin, X. Fan, A. Pearse, S. C. Liou, K. Gregorczyk, M. Leskes, C. Wang, S. B. Lee, G. W. Rubloff, M. Noked, Chem. Mater. 29, 20, 8780 (2017). https://doi.org/10.1021/acs.chemmater.7b03058

Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase

Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase

A. C. Kozen, C. F. Lin, O. Zhao, S. B. Lee, G. W. Rubloff, M. Noked, Chem. Mater. 29, 15, 6298 (2017). https://doi.org/10.1021/acs.chemmater.7b01496

A Novel Approach in Sample Preparation of Li Content Materials for TEM Research

S. C. Liou, C. F. Lin, W. A. Chiou, G. Rubloff, Microsc. Microanal. 23, Suppl 1, 308 (2017). https://doi.org/10.1017/S1431927617002227

Electron Microscopy Study of ALD Protective Coating on the FeOF Electrode

C. F. Lin, S. C. Liou, M. Noked, W. A. Chiou, G. Rubloff, Microsc. Microanal. 23, Suppl 1, 2056 (2017). https://doi.org/10.1017/S1431927617010947

Negating interfacial impedance in garnet-based solid-state Li metal batteries

Negating interfacial impedance in garnet-based solid-state Li metal batteries

X. Han, Y. Gong, K. K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nature Mater 16, 572 (2017). https://doi.org/10.1038/nmat4821

Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

A. J. Pearse, T. E. Schmitt, E. J. Fuller, F. E. Gabally, C. F. Lin, K. Geraspoulos, A. C. Kozen, A. A. Talin, G. Rubloff, K. E. Gregorczyk, Chem. Mater. 29, 8, 3740 (2017). https://doi.org/10.1021/acs.chemmater.7b00805

High performance asymmetric V2O5–SnO2 nanopore battery by atomic layer deposition

High performance asymmetric V2O5–SnO2 nanopore battery by atomic layer deposition

C. Liu, N. Kim, G. W. Rubloff, S. B. Lee, Nanoscale 9, 11566 (2017). https://doi.org/10.1039/C7NR02151H

Ultrathin Surface Coating Enables the Stable Sodium Metal Anode

Ultrathin Surface Coating Enables the Stable Sodium Metal Anode

W. Luo, C. F. Lin, O. Zhao, M. Noked, Y. Zhang, G. W. Rubloff, L. Hu, Adv. Energy Mater. 7, 1601526 (2017). https://doi.org/10.1002/aenm.201601526

For more information, please download full publication list: GWR publications updated 2018-11-07

Perspectives, reviews, and selected publication highlights

Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry”, Alexander PearseThomas SchmittEmily SahadeoDavid M. StewartAlexander KozenKonstantinos GerasopoulosA. Alec TalinSang Bok LeeGary W. Rubloff, and Keith E. Gregorczyk. ACS Nano 2018, 12 (5), 4286-4294. DOI: 10.1021/acsnano.7b08751

Nanoscale Protection Layers to Mitigate Degradation in High Energy Electrochemical Energy Storage Systems“, Chuan-Fu Lin, Yue Qi, Keith Gregorczyk, Sang Bok Lee, and Gary W. Rubloff. Accounts of Chemical Research 2018, 51 (1), 97-106.                    DOI: 10.1021/acs.accounts.7b00524

Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte”, A.J. Pearse, T.E. Schmitt, E.J. Fuller, F. El-Gabaly, C-F Lin, K. Gerasopoulos, A.C. Kozen, A.A. Talin, G. Rubloff, K.E. Gregorczyk, Chem. Mater. 2017. DOI: 10.1021/acs.chemmater.7b00805.

Electrochemical Thin Layers in Nanostructures for Energy Storage”, Malachi Noked, Chanyuan Liu, Junkai Hu, Keith Gregorczyk, Gary W Rubloff, and Sang Bok Lee. Accounts of Chemical Research 2016, 49 (10), 2336-2346.                                        DOI: 10.1021/acs.accounts.6b00315

New science at the meso frontier: Dense nanostructure architectures for electrical energy storage”, G. W. Rubloff and S. B. Lee, Invited article, Current Opinion in Solid State and Materials Science 2015, 19(4), 227–234. DOI: 10.1016/j.cossms.2014.12.004

“Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition,” Alexander C. Kozen, Chuan-Fu Lin, Alexander J. Pearse, Marshall A. Schroeder, Xiaogang Han, Liangbing Hu, Sang-Bok Lee, Gary W. Rubloff, and Malachi Noked. ACS Nano 2015, 9 (6), 5884-5892. DOI: 10.1021/acsnano.5b02166

 

Atomic Layer Deposition of the Solid Electrolyte LiPON,” Alexander C. Kozen, Alexander J. Pearse, Chuan-Fu Lin, Malachi Noked, and Gary W. Rubloff. Chemistry of Materials 2015, 27 (15), 5324-5331. DOI: 10.1021/acs.chemmater.5b01654

An all-in-one nanopore battery array,” C. Liu, E. I. Gillette, X. Chen, A. J. Pearse, A. C. Kozen, M. A. Schroeder, K. E. Gregorczyk, S. B. Lee, and G. W. Rubloff, Nature Nanotechnol 2014, 9(12), 1–9. DOI: 10.1038/NNANO.2014.247.

From nanoscience to solutions in electrochemical energy storage”, G.W. Rubloff, A. C. Kozen, and S. Bok Lee, J. Vac. Sci. Technol. A 2013, 31(5), 058503–21. DOI:10.1116/1.4816262.

Nanotubular metal–insulator–metal capacitor arrays for energy storage“, Banerjee, P., Perez, I., Henn-Lecordier, L. et al. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotech 20094, 292–296. https://doi.org/10.1038/nnano.2009.37