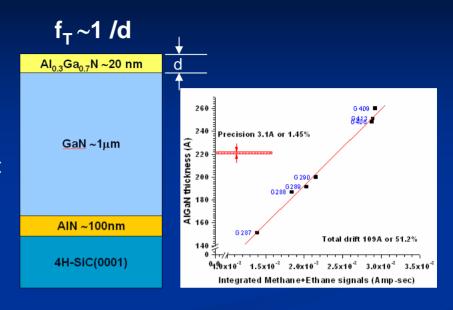
Real-Time Advanced Process Control for GaN MOCVD

Real-Time APC for GaN MOCVD Processing

Accomplishment

Mass spectrometric sampling of reaction products provides real-time measurement of layer growth rates and thickness

Real-time end point control demonstrated at 1-2% precision for critical 20nm AlGaN cap layer


Sensing also enables prediction of crystal quality

Significance

GaN HEMT technology requires precise control of AlGaN thickness for device speed and manufacturability

Advanced process control (APC) now essential in semiconductor manufacturing

Mass spectrometry sensing platform supports real-time APC for metrology, material quality, and fault detection

Researchers involved

Soon Cho, Gary W. Rubloff
Rinku Parikh, Ray A. Adomaitis
Collaborations with Northrop Grumman group:
Deborah Partlow, Michael Aumer, Darren
Thomson

Support

Northrop Grumman

Real-Time APC for GaN MOCVD Processing

Publications

- "In-situ chemical sensing in AlGaN/GaN high electron mobility transistor metalorganic chemical vapor deposition process for real-time prediction of product crystal quality and advanced process control", Soon Cho, Gary W. Rubloff, Michael E. Aumer, Darren B. Thomson, Deborah P. Partlow, Rinku Parikh, and Raymond A. Adomaitis, J. Vac. Sci. Technol. B 23 (4), 1386-1397 (Jul/Aug 2005).
- "In-situ chemical sensing in AlGaN/GaN metal organic chemical vapor deposition process for precision film thickness metrology and real-time advanced process control", S. Cho, D. S. Janiak, G. W. Rubloff, M. E. Aumer, D. B. Thomson, and D. P. Partlow, J. Vac. Sci. Technol. B 23 (5), 2007-2013 (Sep/Oct 2005).
- "Real-time material quality prediction, fault detection and contamination control in AlGaN/GaN high electron mobility transistor metalorganic chemical vapor deposition process using in-situ chemical sensing", Soon Cho, Gary W. Rubloff, Michael E. Aumer, Darren B. Thomson, and Deborah P. Partlow, J. Vac. Sci. Technol. B 23 (5), 1849-1855 (Sept/Oct 2005).

Presentations

"Real-time In-situ Chemical Sensing in GaN MOCVD for Advanced Process Control", S. Cho, G. W. Rubloff, M. E. Aumer, D. B. Thomson, and D. P. Partlow, AVS 50th Natl. Symp., Baltimore, MD, Nov. 2-7, 2003

GaN Heterostructure Design

Al_xGa_{1-x}N cap

GaN layer

AIN nucleation layer

4H-SiC(0001) substrate

Composition (~30 to 35% AIN)

High: breakdown suffers Low: 2DEG diminished

Thickness (~20 to 25 nm)

Thick: pinch-off voltage increases

Thin: 2DEG diminished

Crystal Quality

Material Quality (n_{bkg} < 10¹⁴ cm⁻³, even lower desired)
Thickness (~1 um thick)

Cap layer thickness is directly related to transconductance and the frequency of unit current gain

$$f_T \propto g_m \propto \frac{1}{d}$$

Abrupt, high quality interfaces required for all layers

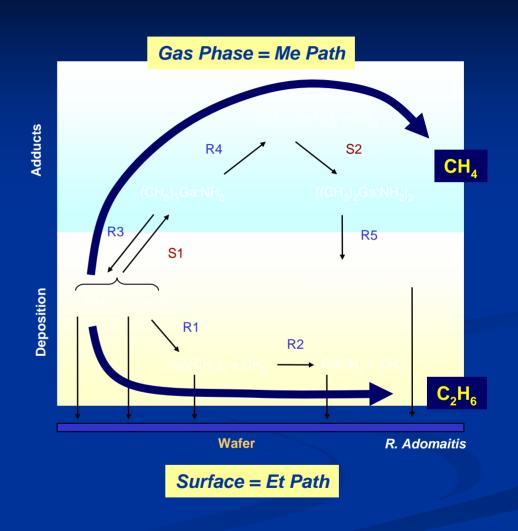
Crystal Quality
Thickness (~100 nm desired)

Thin: GaN crystal quality suffers

Thick: GaN cracks

Desire pitted surface for stress relief in

GaN layer


GaN MOCVD Chemistry

Chemistry is complex – adducts, gas phase and surface reactions

Overall pathways
distinguishable by reaction
product distributions

Real-time mass spectrometry provides quantitative measures of adduct vs. surface pathways

Benefits obtained from new methods for real-time APC without complete understanding of reaction chemistry

APC Implementation

Al_xGa_{1-x}N cap

GaN layer

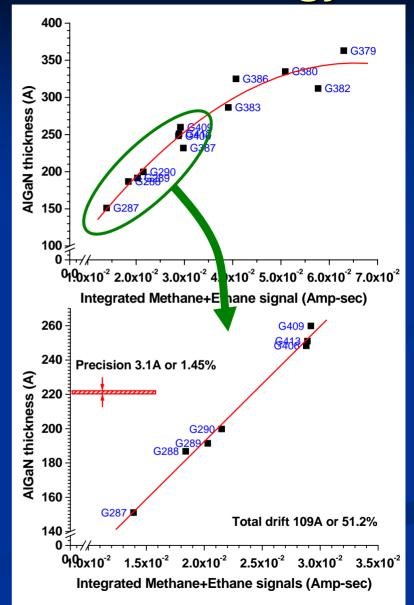
AIN nucleation layer

4H-SiC(0001) substrate

Metric	Real-time in-situ measurement	Post-process characterization
Film Thickness	Time-integration of selected byproduct generation signals (e.g. methane, ethane)	XRR (AlGaN), PL (GaN), SEM (AIN)
Crystal Quality	Ratio of selected byproduct signals (e.g. methane/ethane)	XRD, PL
Impurities (C & O)	Impurities in gas phase	PL, Sheet Resistance, SIMS
Composition	Upstream acoustic sensing for TMA & TMG	PL

Real-Time AlGaN Thickness Metrology

In-situ mass spectrometry provides real-time thickness metrology


Integrated methane (CH₄) and ethane (C₂H₆) product signals quantitatively reflect deposited AlGaN

Actual (post-process) thickness measurements determined by mass spec to 1-2% precision

Implemented and applied routinely in Northrop Grumman's GaN technology development

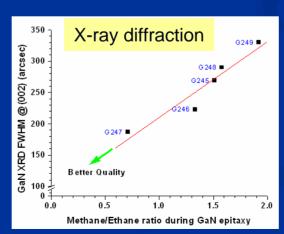
Real-time mass spectrometry used for process end point control of AlGaN cap layer thickness

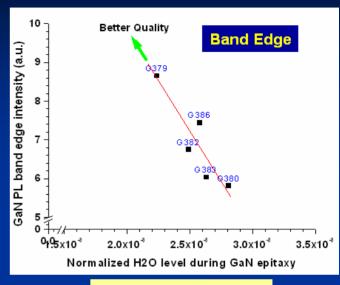
Prototype for advanced process control application in GaN HEMT manufacturing

Real-Time GaN Quality Control

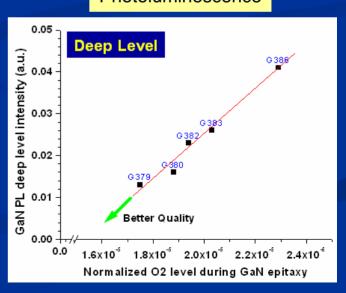
In-situ mass spectrometry indicates GaN material quality in real time

Electronic quality


Determined post-process by photoluminescence spectroscopy


Correlated with impurity levels in gas phase measured by mass spec

Crystal quality


Determined post-process by x-ray diffraction Indicated by mass spec methane/ethane ratio

Photoluminescence

